
Fourier series: An analysis of their Pointwise Convergence with an

Exploration of the Gibbs Phenomenon

Houda Nait El Barj

1 Introduction

Have you ever wondered what music notes, electroencephalograms and the diffusion in semiconductors
all have in common? Their analyses all use Fourier series!

Fourier series are a fundamental tool to study phenomena that can be described by periodic func-
tions. In practice, they are useful for the decomposition of periodic signals such as electrical current,
cerebral waves, images etc.

Let’s consider a basic signal: the vibration of a tuning fork. When it vibrates, the air molecules
oscillate. At a given point x at time t, the variation of the air pressure p produced by the tuning fork is
a pure sinusoidal wave of pulsation ω = 2πv/λ, where v is the speed of the wave and λ its wavelength.
We then have p(x, t) = A cos(2π/λx− ωt).

If we produce simultaneously multiple sounds of different frequencies, then the resulting pressure is
no longer described by a simple sinusoidal function, but by a sum of many sinusoidal functions. This
is what we refer to as the superposition of waves in physics. Similarly, if we play a piano note, we do
not obtain a sound wave of a unique frequency. Instead, it is the sum of a fundamental sound wave
and other sound waves (called the harmonics) whose frequencies are n times the fundamental one. If
sin(ωt) and cos(ωt) correspond to the fundamental frequency, then sin(nωt) and cos(nωt) correspond
to the harmonics.

The function that describes the variation of the air pressure produced by the piano note can be
potentially complicated to analyse since the wave produced is a combination of the fundamental and
harmonics waves. However, this function is periodic, and its period is equal to that of the fundamental
sound wave.

In fact, a periodic signal of any shape can be obtained by summing a sinusoid of a given frequency
(called fundamental) with other sinusoids whose frequencies are integer multiples of the fundamental
(the harmonics). To do so, it is necessary to write all the harmonics involved in the wave. This means
that we need to write an infinite sum of terms, i.e., a series. This series is called the Fourier series.

Fourier series allow us to study a periodic function using its trigonometric decomposition, which is
often easier to handle for subsequent analysis. They were introduced by Joseph Fourier in 1822. Since
then, they constituted the basis of many other branches of Mathematics such as information theory and
harmonic analysis.

In this paper we will study the Fourier series and how they can be used to explore the Gibbs
Phenomenon. In Section 2, we start with rigorously defining the Fourier series. Section 3 then studies
their convergence. Finally, in Section 4 , we explore the Gibbs Phenomenon and how Fourier series can

1



be used to analyse it.

2 Definitions

In this section, we define the Fourier series as well as their corresponding coefficients. First, let’s start
with some preliminary definitions.

Definition 2.1. Let T be a strictly positive real number. g : R → C is called a periodic function with
period T if g(x+ T ) = g(x) for every x in R.

Notice that if g is a T -periodic function, then the function f(x) = g
(
T
2πx
)

is 2π-periodic. Indeed,
f(x+ 2π) = f(x). Consequently, one can limit themselves to the study of 2π-periodic functions.

Definition 2.2. Let [a, b] be an interval of R. The function f : [a, b] → C is piecewise continuous on
[a, b] if there exists a subdivision a = a0 < a1 < ... < an = b and functions fi continuous on [ai, ai+1]
such that f is equal to fi on the interval (ai, ai+1).

It is important to remark that a piecewise continuous function is not necessarily continuous on the
points of subdivision. However, on these points x, it has a left limit denoted f(x−) and a right limit,
f(x+). We will now define trigonometric series.

Definition 2.3. A trigonometric series is a series of functions
∑

n≥0 fn(x), where each function is of
the form fn(x) = an cos(nx) + bn sin(nx) and the an, bn are real numbers for every positive integer n.

In the below proposition, we show that a given trigonometric series can also be written with complex
coefficients.

Proposition 2.4. Let f(x) = 1
2a0 +

∑∞
n=1(an cos(nx) + bn sin(nx)) be a trigonometric series following

definition 2.3. We can rewrite our series such that f(x) =
∑∞

n=∞ cne
inx and each of the cn is a complex

number.

Proof. Let f(x) = 1
2a0 +

∑∞
n=1(an cos(nx) + bn sin(nx)). We can use the identities cos(nx) = einx+e−inx

2

and sin(nx) = einx−e−inx

2i to replace the trigonometric functions in the series with exponentials of the

form eikx where k is an integer. We then get f(x) =
∑∞
−∞ cne

inx where c0 = a0
2 , cn = an

2 + bn
2i and

c−n = an
2 −

bn
2i .

Writing a trigonometric series with complex coefficients is often times more elegant and easier to
manipulate in the algebra! Let’s now define our problem.

Let f : R → C be a 2π-periodic function. The question we are interested in answering is: under
which conditions can f(x) be decomposed into a series of the type

1

2
a0 +

∞∑
n=1

(an cos(nx) + bn sin(nx)), where an, bn ∈ R for all n (1)

or, using proposition 2.4, as a series

∞∑
−∞

cne
inx, where cn ∈ C for all n? (2)
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Such an infinite series for the periodic function f is called the Fourier series. 1 In order to express the
coefficients an, bn and cn, which are called the Fourier coefficients, we need to further assume that f is
bounded and piecewise continuous. The following lemma justifies why.

Lemma 2.5. Every piecewise continuous function is Riemann-Integrable on a bounded interval.

We will use this result without proof here. 2 In 1807, Joseph Fourier provided an analytical
expression for the coefficients defined in equations (1) and (2), as will state our next definition.

Definition 2.6. The coefficients an, bn and cn of the Fourier series are called the Fourier coefficients.
If f is a piecewise continuous function on R, then f is integrable on every bounded interval per lemma
2.5. We then have

an =
1

π

∫ π

−π
f(x) cos(nx)dx, bn =

1

π

∫ π

−π
f(x) sin(nx)dx, and cn =

1

2π

∫ π

−π
f(x)e−inxdx.

Let’s prove the formula for the coefficient cn. Note that the formulae for an and bn are obtained
directly from that of cn by letting an = cn + c−n and bn = i(cn − c−n).

Proof. First, we will assume that f(x) indeed has a decomposition in Fourier series, and in particular
that the series converges absolutely, i.e, that

∑∞
n=−∞ |cn| <∞ We then have

f(x) =
∞∑

n=−∞
(cne

inx).

We can now multiply this equality by e−ikx, k ∈ Z and integrate on [−π, π] piecewise. We get∫ π

−π
f(x)e−ikxdx =

∞∑
n=∞

cn

∫ π

−π
ei(n−k)xdx,

where we have used the fact that the Fourier series converges absolutely. 3 Furthermore,
∫ π
−π e

i(n−k)xdx =
[

1
i(n−k)e

i(n−k)x
]π
−π

= (−1)n−k−(−1)n−k

i(n−k) = 0, for every n 6= k∫ π
−π e

i(n−k)xdx =
∫ π
−π dx = 2π, when n = k.

Thus ∫ π

−π
f(x)e−ikxdx = 2πck, for all k.

Having an analytical expression for the Fourier coefficients allows us to define the partial sums of
the Fourier series of a given function.

1We admit here that a given function has a unique Fourier series. The interested reader may refer to [1] for a proof.
2See Proposition 11.5.6 in [4] for a proof.
3Here we admit without proof that if the Fourier series converges absolutely, i.e.

∑∞
n=−∞ |cn| < ∞, then∫ b

a
limN→∞ hN (x)dx = limN→∞

∫ b

a
hN (x)dx where hN (x) =

∑n=N
n=−N cne

i(n−k)x. Indeed, if the Fourier series is abso-
lutely convergent, then it converges uniformly to f . The interested reader may refer to [2] where a proof of this result is
given in Corollary 2.4.
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Definition 2.7. We denote by SfN (x) the partial sums of order N of the Fourier series for the function
f ,

SfN (x) =
1

2
a0 +

N∑
n=1

(an cos(nx) + bn sin(nx)) =
n=N∑
n=−N

cne
inx,

where an, bn and cn are the Fourier coefficients of f as defined in definition 2.6.

If {SfN (x)}∞N=1 is close enough to f(x) for every x, then one could study the Fourier series instead of
the function itself and hope to get accurate results. As such, it is essential to determine the conditions
under which {SfN (x)}∞N=1 converge to f(x). This will be the focus of our main section.

3 Convergence of the Fourier series

In this section we probe the pointwise convergence of the Fourier series. As mentioned in Section 2, we
are essentially asking the question: under which conditions does {SfN (x)}∞N=1 converge to f(x)?

This is central to Fourier analysis, since it allows the analysis of an often times complicated periodic
function by replacing it with its finite Fourier series. If the series converges to the original function,
then the approximation is good enough, which validates asymptotically such an approach. In theory,
many types of convergence could be studied (uniform convergence, convergence almost everywhere...).
However, in this paper, we will only be concerned with pointwise convergence. As such, we want to
define the conditions under which SfN (x) − f(x) −−−−→

N→∞
0. To do so, we first need to introduce the

Dirichlet Kernel whose properties are central to the convergence of the Fourier series.

3.1 The Dirichlet kernel

Definition 3.1. We call the Dirichlet kernel, the trigonometric polynomial

Dn(x) =
1

2π

N∑
n=−N

einx =
1

π

(
1

2
+

N∑
n=1

cos(nx)

)
.

The Dirichlet kernel is essential to the study of the convergence of Fourier series. It is named after
the German mathematician Peter Gustav Lejeune Dirichlet who first expressed, in 1829, the partial
sums of the Fourier series using the kernel.

As we will see shortly, this Kernel has many elegant properties upon which the convergence of the
Fourier series depends. The first useful property we establish relates to the area under the kernel on
[−π, π].

Lemma 3.2. Let DN (x) denote the Dirichlet Kernel per definiton 3.1, then
∫ π
−πDN (x)dx = 1.

Proof. First, notice that we can use the Châsles relation to get
∫ π
−πDN (x)dx =

∫ 0
−πDN (x)dx +

4



∫ π
0 DN (x)dx. Then, by definition 3.1, we have∫ π

0
DN (x)dx =

∫ π

0

1

π

(
1

2
+

N∑
n=1

cos(nx)

)
dx

=

[
x

2π
+

1

π

N∑
n=1

sin(nx)

n

]π
0

=

(
π

2π
− 0

2π

)
+

1

π

N∑
n=1

(
sin(nπ)

n
− sin(n0)

n

)
=

1

2
.

In the above, we have used the fact that for every positive integer k, sin(kx) = 0 when x = 0 or x = π.
Similarly, we find that

∫ 0
−πDN (x)dx = 1

2 , which then implies that
∫ π
−πDN (x)dx = 1

2 = 1.

The fact that the area under the Dirichlet kernel from −π to π is equal to one will prove essential
when explicitly computing the partial sums of the Fourier series. Indeed, we next show that the partial
sums can be expressed as a function of the kernel.

Lemma 3.3. Let SN (x) denote the partial sum of order N for the Fourier series as in definition 2.7.
We have the following equality

SfN (x) =

∫ π

−π
f(y)DN (x− y)dy.

Proof. From Definition 2.7,

SfN (x) =

N∑
n=−N

cne
inx

=
N∑

n=−N

1

2π

∫ π

−π
f(y)e−inydyeinx, using 2.6

=

∫ π

−π
f(y)dy

1

2π

N∑
n=−N

ein(x−y)

=

∫ π

−π
f(y)DN (x− y)dy, using 3.1.

Remember that the Dirichlet kernel is itself expressed as a sum per definition 3.1. As such one
may wonder why we would be interested in expressing the partial sums of the Fourier series using the
Dirichlet kernel, which is just another sum. In fact, while the Kernel is a somewhat awkward sum, the
following result shows that we can reduce it to a single quotient of sines. Hence, this will in return allow
us to compute explicitly (under certain conditions!) the partial sums.

Lemma 3.4. Let x be a real number such that x is not an integer multiple of 2π. The Dirichlet kernel
at x is given by

DN (x) =
1

2π

(
sin((N + 1

2)x)

sin(x2 )

)
.
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Proof. For a real number x which is not an integer multiple of 2π, by definition 3.1, we have

DN (x) =
1

2π

N∑
n=−N

einx

=
1

2π
e−iNx(1 + eix + ...+ ei2Nx)

=
1

2π
e−iNx

ei(2N+1)x − 1

eix − 1

=
1

2π

ei(N+1)x − e−iNx

eix − 1

=
1

2π

ei(N+ 1
2

)x − e−i(N+ 1
2

)x

ei
x
2 − e−i

x
2

=
1

2π

sin((N + 1
2)x

sin(x2 )
.

Notice that if x is an integer multiple of 2π, we can then use 3.1 to compute DN (x) = 1
π

(
1
2 +N

)
.

Lemmas 3.2-3.4 constitute the main properties of the Dirichlet Kernel that we will use later on. They
are powerful in the sense that they relate the convergence of an infinite series to the limit of a cer-
tain sequence of integrals. It substantially simplifies the study of convergence since working with and
estimating integrals is usually much easier than the corresponding problem with infinite series.

Before moving on to study the pointwise convergence of the Fourier series we need to state a final
powerful result relating the properties of the function f to the convergence of its Fourier coefficients.

3.2 Riemann-Lebesgue Lemma

Lemma 3.5. Let f : [a, b]→ C be a Riemann-integrable function on [a, b]. Then,

lim
n→∞

∫ b

a
f(x) cos(nx)dx = 0

lim
n→∞

∫ b

a
f(x) sin(nx)dx = 0

lim
n→±∞

∫ b

a
f(x)e−inxdx = 0.

Riemann first presented this theorem as part of his thesis on trigonometric series in 1854. The
result can be shown, though not easily, by proving that every integrable function is a kind of limit of
differentiable functions and then taking limits. An important consequence of the Riemann-Lebesgue
Lemma is given by the following corollary.

Corollary 3.6. If f is a 2π-periodic function continuous on [−π, π], then, limn→∞ |an| =
limn→∞ |bn| = limn→±∞ |cn| = 0.
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We will use this result without proof. 4 It is powerful since it tells us that the Fourier coefficients
(as defined in 2.6) of a 2π-periodic and piecewise continuous function go to zero as n goes to infinity.
Thus, one can foresee that it will be essential when deriving the conditions of pointwise convergence of
the Fourier series to its function.

The properties of the Dirichlet Kernel derived in this section and the Riemann-Lebesgue lemma will
be our main tools to characterise the conditions for pointwise convergence. We do so next.

3.3 Pointwise convergence of the Fourier series

Remember that we are interested in determining when {SN (x)}∞N=1 converge to f(x) pointwise on
[−π, π]. An answer to this question is found in the below theorem which was originally stated by
Dirichlet.

Theorem 3.1. (Dirichlet, 1824). Let f : R → C be a 2π-periodic function that is piecewise smooth.
Then, for every x,

lim
N→∞

SN (x) =
f(x−) + f(x+)

2
,where f(x±) = lim

h→0,h>0
f(x± h).

In particular limN→∞ SN (x) = f(x) on every point x where f is continuous.

The conditions of Dirichlet require f to be piecewise smooth. This means that on any real closed
interval [a, b], both f and f ′ are piecewise continuous. In particular, f ′(a+) and f ′(b−) exist. We
will not prove Dirichlet original theorem. 5 Instead we will prove the below theorem for continuously
differentiable functions.

Theorem 3.2. Let f be a 2π-periodic function. If f is continuously differentiable on [−π, π], then
{SN (x)}∞N=1 converges pointwise to f(x) on [−π, π].

Proof. From Lemma 3.3 we can write

SN (x) =

∫ π

−π
f(y)DN (x− y)dy (3)

=

∫ π

−π
f(x− u)Dn(u)du (4)

=

∫ π

−π
f(x+ v)Dn(v)dv. (5)

In the above, the second equality is obtained by the change of variables u = x−y using the fact that the
integrated function is 2π-periodic. Similarly, the third equality is obtained by the change of variables
v = −u and using the fact that

∑n
k=−n e

ikv =
∑n

k=−n e
ikv.

Let x ∈ [−π, π]. Since f is continuously differentiable at x we can write

SN (x)− f(x) =

∫ π

−π
f(x+ y)Dn(y)dy − f(x). (6)

4The interested reader may refer to [8] for a proof.
5The interested reader may refer to Chapter 2 of [3].
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Recall from Lemma 3.2 that
∫ π
−πDN (y)dy = 1. Thus,

SN (x)− f(x) =

∫ π

−π
f(x+ y)Dn(y)dy −

∫ π

−π
DN (y)dyf(x) (7)

=

∫ π

−π
[(f(x+ y)− f(x))DN (y)dy] . (8)

Now recall from Lemma 3.4 that DN (y) = 1
2π

(
sin((N+ 1

2
)y)

sin( y
2

)

)
. Notice that this expression is not defined

when sin(y2 ) = 0, which happens when y is an integer multiple of 2π. Thus, in the interval [−π, π], when
y = 0, we define DN (0) = 1

π

(
1
2 +N

)
. For every non-zero y, we thus get

SN (x)− f(x) =

∫ π

−π
(f(x+ y)− f(x))

1

2π

(
sin((N + 1

2)y)

sin(y2 )

)
dy. (9)

Let gx(y) = f(x+y)−f(x)
2 sin( y

2
)

. g is piecewise continuous on [−π, 0) ∪ (0, π]. Since f is assumed to be

continuously differentiable on [−π, π], we have limy→0
f(x+y)−f(x)

y = f ′(x). Consequently we get that

gx(y) =
f(x+ y)− f(x)

y

y
2

sin
(y

2

) −−−→
y→0

f ′(x),

which is well defined since f is continuously differentiable on [−π, π]. Thus, g is continuous on [−π, π]
where we define gx(0) = f ′(x). We can rewrite (9) such that

SN (x)− f(x) =
1

π

∫ π

−π
gx(y) sin

[(
N +

1

2

)
y

]
dy. (10)

Using our trigonometric identities we can expand sin
((
n+ 1

2

)
y
)

= sin(Ny) cos(1/2)+sin(1/2) cos(Ny).
Plugging this back in (10), we get

SN (x)− f(x) =
1

π

∫ π

−π
[gx(y) sin(Ny) cos(y/2) + gx(y)cos(Ny)sin(y/2] dy. (11)

We let cx(y) = gx(y) cos(y/2) and dx(y) = gx(y) sin(y/2). It follows by definition of gx(0) that cx(0) = 0
and dx(0) = 0. We then have

SN (x)− f(x) =
1

π

∫ π

−π
cx(y) sin(Ny)dy︸ ︷︷ ︸

Fourier coefficient bN for cx

+
1

π

∫ π

−π
dx(y) cos(Ny)dy︸ ︷︷ ︸

Fourier coefficient aN for dx

by 2.6. (12)

We now prove that cx is continuous and 2π-periodic. We have shown that g is continuous on [−π, π].
Furthermore h : y → cos(y/2) is continuous on [−π, π]. Thus cx is continuous on [−π, π].

For every y 6= 0 in [−π, π],

cx(y + 2π) =
f(x+ y + 2π)− f(x)

2 sin(y/2 + π)
cos(y/2 + π)

=
f(x+ y)− f(x)

2 sin(y/2)
cos(y/2), since f , cos and sin are 2π periodic

= cx(y).
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By definition of g, we also have 2π-periodicity when y = 0. Thus, cx(y) is 2π-periodic. Similarly, we
have that dx(y) is continuous on [−π, π] and 2π-periodic.

We can now apply the Riemann-Lebesgue Lemma to conclude. Let aN and bN be defined as in (12),
Then by 3.6, limN→∞ |aN | = limN→∞ |bN | = 0. Thus limN→∞ SN (x)− f(x) = 0.

We now have an answer to our question! We know that the pointwise convergence on a bounded
interval of a Fourier series to its original function happens when the function is continuously differentiable
on that interval and 2π-periodic! More generally, referring to the conditions of Dirichlet stated in
Theorem 3.1, pointwise convergence obtains when the function is piecewise smooth and 2π-periodic.
This is an extremely important result as it will allow us, in practice, to replace the analysis of a
complicated periodic function by its finite Fourier series (which is often much easier to handle!). Given
the initial function is piecewise smooth, we know that our approximation will be asymptotically close
to the original function.

4 Understanding the Gibbs Phenomenon

Under Theorem 3.1, one would expect that the graph of SfN (.) converges to the graph of f as N →∞
since the series of f converges pointwise to 1

2 (f(x−) + f(x+)) for every point x on the domain of
f . However this is not always true! In a 1899 Nature paper, J. Willard Gibbs showed that when
the function f has discontinuity points, the graph of SfN displays oscilliations around the points of

discontinuity: this is the Gibbs Phenomenon. In fact, for the graph of SfN to converge towards the
graph of f(.) as N → ∞, we need a stronger form of convergence : Uniform Convergence. This type
of convergence is not satisfied on the whole domain of defintion for Fourier series whose functions have
discontinuities. Let’s now explain the Gibbs Phenomenon. To do so we will take the example of the
’square wave’ of height π/4.

4.1 Example: The square wave

In the below figure, we present a graph of the square wave.

Figure 1: Graph of a square wave. Source-Wikipedia

For every positive integer n we define f to be the function

f(x) =

{
π
4 if x ∈ [2nπ, (2n+ 1)π]

−π
4 if x ∈ [(2n+ 1)π, (2n+ 2)π].

Notice that f has a jump discontinuity of height π/4−(−π/4) = π/2 at every multiple of π. Without
loss of generality, let N be even (the case where N is odd is similar). Then, the corresponding Fourier
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series for the square wave is

SfN (x) = sin(x) +
1

3
sin(3x) + ...+

1

N − 1
sin((N − 1)x).

Below, we plot the graph of SfN as we increase N .

Figure 2: The graph of SfN as we increase N to the right. Source: Wikipedia

Notice that despite N increasing, the amplitude of overshoots and undershoots at the discontinuity
points does not decrease. Let’s analyse the discontinuity point x = 0 for a fixed N . On the one hand
we have that

SfN (0) = sin(0) +
1

3
sin(0x) + ...+

1

N − 1
sin((N − 1))

= 0 =
π
4 −

π
4

2
=
f(0−) + f(0+)

2
.

On the other hand, we can calculate the value of the finite sum SfN at a point close but greater than
0. We then get

Sfn(0 +
2π

N
) = sin(π/N) +

1

3
sin(3π/N) + ...+

1

N − 1
sin((N − 1)π)

=
π

2

[
2

N
sinc

(
1

N

)
+

2

N
sinc

(
3

N

)
+ ...+

2

N
sinc

(
N − 1

N

)]
,

where sinc(x) = sin(πx)
πx . This then implies that limN→∞ S

f
n

(
0 + 2π

N

)
= π

2

∫ 1
0 sinc(x)dx. Thus,

lim
N→∞

Sfn

(
0 +

2π

N

)
=
π

2

∫ 1

0

sin(πx)

πx
dx

=
1

2

∫ 1

0

sin(πx)

x
dx

=
π

4
+
π

2
· (0.0899490).

Similarly, we can use the fact the the sinus function is odd to get

lim
N→∞

Sfn

(
0− 2π

N

)
= lim

N→∞
−Sfn

(
2π

N

)
= −π

4
− π

2
· (0.0899490).

Here, the important fact to notice is that, not only do the partial sums overshoot (resp. undershoot)
the point of discontinuity on the right (resp. left), but these overshoot and undershoot do not die out

as N gets larger! In fact, for any value of N , the graph of SfN will have a total overshoot 9% of of the
magnitude of the jump! Let’s now characterise the Gibbs Phenomenon more generally.
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4.2 The Gibbs Phenomenon in general

If f is a continuous function with period T with a discontinuity point at x0, we then have

lim
x→x0+

f(x)− lim
x→x0−

f(x) = f(x0+)− f(x0−) = a 6= 0,

where a is the difference between the two limits of the function on the right and on the left of the
discontinuity point.

Remember that the Finite sum for the Fourier series is

SfN (x) =
1

2
a0 +

N∑
n=1

(an cos(
2πnx

T
) + bn sin(

2πnx

T
)).

Then,

lim
N→∞

Sfn(x0 +
T

2N
) = f(x0+) + a(0.089)

and

lim
N→∞

Sfn(x0 +
T

2N
) = f(x0−)− a(0.089),

even though,

lim
N→∞

Sfn(x0) =
f(x0−) + f(x0+)

2
.

Hence, while the Fourier partial sums SfN converge pointwise to the function f , which means the
approximations gets better as N gets larger, the overshoot and undershoot persist at the points of
discontinuity.
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